El puerto paralelo de una PC es ideal para ser usado como herramienta de control de motores, relés, LED's, etc. El mismo posee un bus de datos de 8 bits (Pin 2 a 9) y muchas señales de control, algunas de salida y otras de entrada que también pueden ser usadas fácilmente.
Las PC's generalmente poseen solo uno de estos puertos (LPT1) pero según el autor --con muy poco dinero se le puede adicionar una tarjeta con un segundo puerto paralelo (LPT2)—
Breve descripción del puerto paralelo:
El puerto paralelo de un PC posee un conector de salida del tipo DB25 hembra cuyo diagrama y señales utilizadas podemos ver en la siguiente figura:

Si deseamos escribir un dato en el bus de salida de datos (pin 2 a 9) solo debemos escribir el byte correspondiente en la dirección hexadecimal 0X378 (888 en decimal) cuando trabajamos con el LPT1 y 0x278 (632 en decimal) cuando trabajamos con el LPT2. Los distintos pins (bits) de salida correspondientes al bus de datos no pueden ser escritos en forma independiente, por lo que siempre que se desee modificar uno se deberán escribir los ocho bits nuevamente.
Para leer el estado de los pins de entrada (10, 12, 13 y 15) se debe realizar una lectura a la dirección hexadecimal 0x379 (889 en decimal) si trabajamos con el LPT1 o bien leer la dirección 0x279 (633 en decimal) si trabajamos con el LPT2.
La lectura será devuelta en un byte en donde el bit 6 corresponde al pin 10, el bit 5 corresponde al pin 12, el bit 4 corresponde al pin 13 y el bit 3 corresponde al pin 15.
En la siguiente tabla se puede ver lo antes dicho en una forma más gráfica:
Interfaz:
En la archivo IPP01-CIRCUIT.PDF podemos apreciar el circuito correspondiente a la interfaz para el puerto paralelo.
La interfaz nos provee 8 salidas TTL, 7 salidas de potencia (500ma) y cuatro entradas TTL. Es importante tener en cuenta que las salidas TTL entregan una tensión de 5v y solo se les puede exigir un mínimo de corriente, apenas suficiente para activar un transistor o bien un par de compuertas TTL.
Así mismo las entradas TTL deben ser alimentadas con una tensión máxima de 5v o de lo contrario el chip resultará dañado. Esta tensión se obtiene desde VDD a través del regulador U1 (7805).
Las 7 salidas de potencia no son mas que la amplificación mediante un array de transistores Darlington (ULN2003) de las salidas TTL 0 a 6 (la salida 7 no es usada). Este chip puede drenar una corriente máxima de 500ma, lo que es suficiente para activar un LED, un relé y hasta un motor DC de bajo consumo (tipo motor de grabador).
La teoría de funcionamiento es muy simple, solo se usan unas compuertas del tipo Buffer (74HC245) para poder conectarnos con seguridad al puerto paralelo, y un array de transistores Darlington (ULN2003) para brindar una salida de mayor potencia.
Cabe aclarar que los dos integrados 74HC245 se alimentan del regulador de voltaje 7805, el cual se encarga de reducir la tensión de entrada (VDD) a 5v (Vcc). La tensión VDD debe estar comprendida entre 9 y 12v.
La tensión de entrada VHH alimenta directamente al ULN2003 para obtener mayor voltaje en caso de querer manejar un relé o bien un pequeño motor. La tensión VHH debe estar comprendida entre 3 y 15v. VHH podrá conectarse directamente a VDD (y de esa forma usar solo un fuente de alimentación) siempre que esto no provoque problemas de ruido.
En los siguientes diagramas se pueden apreciar un ejemplo de conexionado de un LED y un Relé a las salidas de potencia. En forma análoga podríamos conectar también un pequeño motor DC.
